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Abstract. The Hamiltonian of the generalized Dicke model is transformed to describe 
collective excitations above a ground state. When the wavelength of the field modes is 
considerably less than the system dimensions, the condition for the existence of a phase 
transition in a lattice configuration differs from the long-wave result. The effect of atomic 
separation on certain ground state properties is examined and a short description of the 
excitation spectrum is given. For a dielectriccrystal, it is shown that the super-radiant phase 
transition is impossible in principle for up to 48 modes. 

1. Introduction 

The Dicke model, which describes the coupling of a set of ( 2 s  + I) level systems to a 
finite number of modes of a boson field, has been studied in connection with a variety of 
physical effects. These include many of the effects in non-linear optics, phenomena 
involving the interaction of spin waves and phonons in paramagnetic crystals (Messina 
and Pers ia  1973) and the cooperative Jahn-Teller effect in rare-earth vanadates 
(Elliot et a1 1972). The latter, which is a second-order phase transition, seems to be well 
established experimentally, but the so called super-radiant phase transition of optics 
has not been observed. Recently, the theoretical basis for the existence of a phase 
transition in the optical case has been questioned (Rzqiewski et a1 1975). This aspect of 
the Dicke model is the subject of the following work. A realistic case which has not 
received detailed attention is the one in which the mode wavelength, while exceeding 
the interatomic spacing, is considerably less than the cavity dimensions. When the 
atoms are arranged on a crystal lattice it is found that the mathematical requirement for 
a phase transition to exist differs from the long-wavelength result. 

Standard canonical transformation theory is applied to recast the Hamiltonian into a 
form which describes collective excitations above a ground state for any value of the 
coupling constant. The method is a rather obvious generalization of a calculation for 
the multi-atom model (Thompson 1975a). It displays clearly why the 'Bogolubov trick' 
employed by Vertogen and de V i e s  (1974) and Pimental and Zimerman (1975) works 
correctly for the ground state in this problem. 

In writing the Dicke Hamiltonian in the form 
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no particular spatial arrangement of the N atoms labelled by position vectors 1 is 
envisaged yet. The field modes (finite in number) associated with annihilation and 
creation operators a k ,  a:, wavevector k and frequency U k ,  interact with the dipole 
moment of each atom which is represented by the spin operator crl(l). The energy 
spacing of the atomic levels is hw0, the spin operator rr3(l) having eigenvalues -S, 
- S +  1, . . . , +S. There appears to be no loss of generality in choosing the coupling 
constant g k  which is O(N-1'2) to be real and positive. 

Following Duncan (1974), we have kept the anti-resonant terms of the interaction in 
(1). If we were to use the rotating wave approximation, a constant of the motion 
appears which has the effect of turning the problem into one about a finite-dimensional 
vector space. This is a definite disadvantage for the present approach (Thompson 
1972), although interesting numerical work becomes possible when the rotating wave 
approximation is adopted (e.g. Nakamura and Sugano 1975). 

2. The canonical transformation 

Guided by the earlier calculation (Thompson 1975a) we define two unitary operators 
U1 and U,: 

The sets of parameters {. . . z k . .  .}, {e,} are at present 
variables are now defined: 

(2) 

(3) 

arbitrary. New dynamical 

From now on, the 'new' label will be dropped where there is no confusion. We find that 

Y€= Eo+ K1+ K2 + K3 
with 
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+ ( - z k )  eik"sin e l ( ~ 3 ( i ) + ~ ) + ~ ~ ]  (8) 

It will be seen that a number of terms linear in S have been included in the above 
equations although they must cancel in 3l. The reason for their appearance can be 
understood by considering the associated variational problem. If we denote the state of 
no photons and all atoms in their lowest states by 40, then a suitable ground state trial 
function I) for H is given by 

An upper bound for the ground state energy of H is then 

which is the same as Eo in (6). Furthermore, in this trial ground state JI, the expectation 
value of v3(I) is -S cos ef, or equivalently, the expectation value of (~~(l) , ,~ , . ,  in the 
transformed ground state is -S. It is vital that K1 should vanish identically if K2 is to 
describe collective excitations above the new ground state. By choosing the parameters 
z k ,  8, which make Eo stationary this is assured. The stationarity of Eo requires 

wo sin el + 2 cos e,C g k  ( z k  e''"+ cc) = 0. ( 1 2 )  

The number of photons present in state r/l is & ) Z k l 2  and so the existence of non-trivial 
solutions of (1 1 )  and ( 1 2 )  points to the existence of the super-radiant phase change. In 
terms of the 8, the photon number n (for modes of the same frequency W k )  is 

k 

n = f ~ w ~ w ; '  1 (sec e, -cos e,) ( 1 3 )  
I 

and in general, 

Eo = - ~ S W ,  (sec er +COS e,) s -'SW& ( 1 4 )  
I 

showing the instability of the vacuum state ( z k  = 0, 8, = 0). 
Before we attempt to solve ( l l ) ,  ( 1 2 )  for special configurations of the atoms, two 

general comments may be made. Upon elimination of the 8 variables followed by the 
application of some simple inequalities on complex numbers, we easily find 

b'kIQ4gkSNOJi1Wi1 gqlZql 
4 

which leads to 
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as a necessary condition for non-zero ,?k to exist. The equality in (15) applies if all the 
atoms are located at one site, that is to say, if we are in the very long-wave limit (see e.g. 
Hioe 1973). 

If instead the i!k are eliminated we get 

tan B1 = 8 S w 0 1 1  1 g&W,' cos k. ( I  - 1') sin 01, 
k I' 

which is formally similar to the BCS integral equation in the Anderson (1958) approach. 
If a solution set {e1} is found then {-e1} is also a solution. This sign change corresponds 
to a grand reversal of the x component of 'spins' of the Hamiltonian H which in turn 
implies a reversal of the macroscopic dipole moment of the ground state. As in the 
theory of ferromagnetism we assume that a transition from 'all spins up' to 'all spins 
down' has a vanishingly small probability so that interference of these degenerate 
ground states may be ignored. A situation where tunnelling may be important has been 
discussed recently for the multi-atom model (Messina and Pers ia  1975). 

The final step in the transformation of H is to express the new spin operators U, 

in terms of boson operators bl, 6: using the formula of Holstein and Primakoff (1940): 

~ 3 ( l ) ~ ~ ~  = -S  + b:b1 
(17)  

The assumption now made is that for the low-lying excited states of X the expectation 
value of the number operator b:bl is very much smaller than S. The similarity to the 
procedure in spin-wave theory is obvious and we shall consider later the case where the 
vectors f define a crystal lattice. 

Using the approximations 

= b:(2s  - 6 : b p  = (2s -b:bpb1.  

c7'+)(l)new = (2S)'/2b:; U(-)( l )new = (2s)1'2b[ 

of (17) we find 

where the are solutions of ( 1  l ) ,  (12).  

3. The ground state 

In this and the following sections we take the case of an atomic arrangement with a 
centre of inversion symmetry at f = 0 so that 

e, = 8-1. (20) 

From ( l l ) ,  z k  =Z?k = i: and so the imaginary part of ,?k vanishes. Denoting the real 
part of z k  by x k  we can write (1 l), (1 2) in the form: 
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These equations are readily solved when two field modes of equal but opposite 
wavevector are involved, e.g. k and -k. For non-trivial solutions we require: 

16gESN 1 cos’k.1 
WOWk k? (1+E2cos2k.l) 

E’ 64gzx:wG2 = 0(1) (23) 
which is essentially the zero temperature limit of a one-mode result for Hioe’s model B 
(1973, equation (39)). Since the maximum value of the sum in parenthesis in (22) 
occurs for E = 0, the necessary and sufficient condition for solutions to exist is 

16g&u0’w;’ cos’k.l> 1 
I 

and for short waves the sum in (24) has the value $N in condensed matter. Imagine a 
rectangular block of material as working substance so that periodic boundary condi- 
tions on the field modes give an integral number of &waves inside it. The sum in (23) 
may now be written in terms of complete elliptic integrals E, K to modulus K where 

K ’ E E ’/ (1 f E ’) 

and (22) becomes 

32g~SNco,’o;’~-’(l +E’)-’/’B(K) = 1 (25)  

with K ’ B ( K ) = E - ( ~  -K’)K.  The function B ( K )  (Jahnke and Emde 1945) decreases 
montonically from ~ / 4  and tends to zero as E increases, making the solution of (25) for 
given gk relatively straightforward. Expressions for the ground state energy Eo and 
total photon number are: 

Eo = -Nw~ST-’( 1 -I- E’)’/’[E -I- (1 - K ’ ) K ]  

n = N W ~ S . ~ ~ - ’ W ~ ’ ( I  +E’)’/’[E - (1 - K’)K] 

The field intensity, polarization and atomic inversion averaged over a cell in the 
neighbourhood of site 1 are readily seen to be proportional to tan el, sin O1 and cos el 
respectively. Now 

(26) 
and while the right-hand side of (26) is a periodic function of I ,  it is not sinusoidal, In 
the strong coupling regime where E is large, the value of sin Or changes from + K to - K 

in the space of about E-’ of the wavelength, pointing to a sort of domain structure 
(figure 1) in the ground state. 

sin el = E cos k.l(l + E ’  cos’k.I)-’/’ 

1-1 

Figure 1. Schematic behaviour of polarization in the optical model; k in 1-direction. 
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4. Low-lying energy levels in the case of a crystal lattice 

The purpose of this section is to diagonalize the coupled oscillator Hamiltonian K2 of 
(18) but we verify first that the anharmonic term K3 given by (19) can be treated as a 
small perturbation on the excited states near the ground state. This is easily done in 
terms of spin-wave variables Bq rather than the b,. We set 

where (4) are the set of wavevectors appropriate for a lattice with periodic boundary 
conditions. The operators B,, Bi satisfy the usual boson commutation relations. From 
(26), sin may be written as a Fourier series using the cosines of odd multiples of k.1 
:.e.: 

m 

sin 8, = cos(2n + 1)k.l. 
n = O  

Upon substitution of (27) and (28) into the anharmonic term we obtain 

K3 =c cc gkAZn+l(akB4Bf;+c2n+2)k+QkB4+2nkB;:+HC 1. (29) 

The numerical factors in each term are proportional to N-l12. Other terms involving 
sums over q in (18) do not contain this factor N-'". It appears that the cubic term 
vanishes in the thermodynamic limit but for finite N i t  can only correct the energy levels 
to order W1.  

Examination of the interzction term in (18) using the Fourier expansion of cos 01, 
shows that spin waves of wavevectors *k, *3k, *5k etc., are coupled to field modes k, 
but that the strength of the interaction rapidly diminishes for the higher harmonics. 
Thus spin waves of optical wavelength are mainly concerned, and for these it is known 
that the corrections arising from use of the full Holstein-Primakoff formula are not very 
important. 

We write down the Heisenberg equations of motion for the operators ak, bI, a:, b: 
e.g.: 

q k n  

bk = i[&, ak] (30) 

and then argue that there exist suitable linear combinations of operators: 

such that 

in which A is an eigenvalue. Combining (30), (31) and (32) gives a set of homogeneous 
equations for the coefficients in (31) and hence a secular determinant for A .  If we carry 
out this procedure but eliminate the coefficients cgI ,  c41 we obtain, for modes of equal 
frequency: 
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with 

In the case of two modes k, -k the secular determinant gives the equations: 

A - U :  = (0) * (2k). (35) 
A characteristic of the cooperative phase transition is the existence here of a root A such 
that A + 0 as 8g:SNui'w;' + 1. The number of distinct denominators in the summand 
of (34) is large at optical wavelengths so that TA(q) considered as a function of A 2  
exhibits asymptotes densely distributed between U: and &(l + e2)  as in figure 2. There, 
the straight line represents the left-hand side of ( 3 3 ,  and the c u b e  is TA(0) + TA(2k). 

Figure 2. Roots of the dispersion relation (35) 

Perhaps the only remarkable feature is the presence of the isolated roots, one well 
above and one well below the quasi-continuous band between wo and oo( 1 + E*)''*. 
They may be found numerically with the aid of the complete elliptic integral of the third 
kind. Remembering the lower sign in (34), we have, in all, four isolated roots in this 
case. The roots in the band are essentially given by the values of oo sec 0, and can be 
interpreted as a kind of Stark shift for 0, < 45", since 

o o s e c ~ l = W O + + ~ o t a n 2 ~ r + .  . .  
and the second term is proportional to the square of the field intensity at site I .  

There will be a correction to Eo, the ground state energy, arising from the change in 
zero point energy when we transform from the ak, bl variables to the a variables. This is 
related by the residue theorem to a suitable contour integral: 

but we shall not attempt to develop this. It is clear from figure 2 that the answer must be 
0(1) as it was in the multi-atom case. 
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5. The critical condition in a crystal lattice 

We consider a set of modes of the same frequency with wavevectors *kl, kk2, *k3 . . . 
which form a 'star', i.e. all members of the set may be reached by applying the symmetry 
operations of the crystal point group to any one of the vectors. For a general direction 
of k, say, the number of vectors M in the star corresponds to the order of the group but 
it will be afactor of M if kl is parallel to a symmetry axis. For the simple cubic lattice, 
M=48. 

In developing (21) we note that 

xkk,=x+k2= . . ' x  

w*kl=w*k2= . "U 

gztkl= g*k, = * 'g 

and so if x f 0, 

2 c; cos 4 .  I 
[ 1 + E 2 ( 2 , '  cos 4 .  1)2]1'2 ' o = 8g2SwO1 1 COS k .  I 

1 

The prime in the q-sums indicates that one of the pair (kl ,  -k l )  is included. Summing 
(36) over these modes gives 

with Q = C,l cos q . I .  Hence 

Now 

Q2 = C Cos2k,. 1 + 1  COS(^, - kj) I + cos(k, + k,) . I 
I I ' I  

and so for periodic boundary conditions E l  Q2 = iNM giving finally 

8SNg2w01w-' > 1 

which is independent of M in contrast to (15). 

6. Conclusion 

The underlying idea of this analysis is that if the ground state of the Dicke model does 
not consist of a mixed state of excited atoms and photons in macroscopic numbers, then 
no phase transition can occur at some finite temperature. We have shown that the 
condition (15) quoted by Hioe (1973) as the requirement for the existence of a phase 
transition when spatial dependence is neglected, is a necessary condition in the usual 
mathematical sense, and its being satisfied does not guarantee that a transition is 
possible. For many modes of equal frequency in a crystal lattice the condition (15) is 
replaced by (38) as discussed in ?J 5. It is more difficult to investigate what happens when 
the mode wavevectors do not form a star or when the symmetry is broken in another 
way. 
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We ought to ask if it is possible in principle for (38) to be satisfied for the optics case. 
On substituting appropriate parameters for a dielectric model of two-level atoms into 
(38) (Kittel 1963, Thompson 1975b) the result is 

l - - E , ' > l  

where eo is the static dielectric constant. This inequality cannot be satisfied and we are 
forced to conclude that in optics no Dicke-type transition can occur. 

One feature of the theory arising inevitably from the restriction of the k-sum in (1) 
to a finite set of field modes, is the 'domain' structure of the ground state in a crystal. No 
effects attributable to such a structure have been reported for the cooperative 
Jahn-Teller effect. 
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